Continuous engineering of nano-cocrystals for medical and energetic applications

نویسندگان

  • D. Spitzer
  • B. Risse
  • F. Schnell
  • V. Pichot
  • M. Klaumünzer
  • M. R. Schaefer
چکیده

Cocrystals, solid mixtures of different molecules on molecular scale, are supposed to be tailor made materials with improved employability compared to their pristine individual components in domains such as medicine and explosives. In medicine, cocrystals are obtained by crystallization of active pharmaceutical ingredients with precisely chosen coformers to design medicaments that demonstrate enhanced stability, high solubility, and therefore high bioavailability and optimized drug up-take. Nanoscaling may further advance these characteristica compared to their micronsized counterparts - because of a larger surface to volume ratio of nanoparticles. In the field of energetic materials, cocrystals offer the opportunity to design smart explosives, combining high reactivity with significantly reduced sensitivity, nowadays essential for a safe manipulation and handling. Furthermore, cocrystals are used in ferroelectrics, non-linear material response and electronic organics. However, state of the art batch processes produce low volume of cocrystals of variable quality and only have produced micronsized cocrystals so far, no nano-cocrystals. Here we demonstrate the continuous preparation of pharmaceutical and energetic micro- and nano-cocrystals using the Spray Flash Evaporation process. Our laboratory scale pilot plant continuously prepared up to 8 grams per hour of Caffeine/Oxalic acid 2:1, Caffeine/Glutaric acid 1:1, TNT/CL-20 1:1 and HMX/Cl-20 1:2 nano- and submicronsized cocrystals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curious cases of 3,6-dinitropyrazolo[4,3-c]pyrazole-based energetic cocrystals with high nitrogen content: an alternative to salt formation.

Two structurally interesting 3,6-dinitropyrazolo[4,3-c]pyrazole-based energetic cocrystals were prepared and confirmed by single crystal X-ray diffraction. As novel energetic materials, these two unusual neutral acid-base complexes possess high nitrogen content, good detonation properties, and improved impact and friction sensitivities which highlight their potential energetic applications.

متن کامل

Preparation of Hexanitrohexaazaisowurtzitane (HNIW) Nano Particle by Normal Microemulsion Based Nonionic Surfactant

The behavior of nanoscale energetic materials is quite different from micronsized energetic materials in many ways. Recently, some techniques such as sol-gel method, high speed air impaction and vacuum codeposition have been employed to obtain nanoscale energetic materials. However, only few attentions were paid to nanoscale energetic materials because of the fabrication difficulty. In this pap...

متن کامل

The great potential of nanomaterials in drilling & drilling fluid applications

The continuous development of global economy with decreasing in available hydrocarbon sources and increasing discovery and extraction costs due to decrease in-situ oil and gas reservoir, displays the necessity of using new techniques for the improve rate of penetration and productivity in well. Nanotechnology has already contributed significantly to technological advances in the energy industri...

متن کامل

Two isostructural explosive cocrystals with significantly different thermodynamic stabilities.

Cocrystallization is currently having a tremendous impact on pharmaceuticals and energetic materials (energetics) and is poised to make a significant mark on other fields such as non-linear optics, ferroelectrics, and organic electronics. In the energetics field the ability of cocrystallization to combine two known explosive compounds into a novel material with distinct properties presents an e...

متن کامل

Dual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications

The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014